
The bond-diluted   Z( q) ferromagnetic model: criticality and break-collapse method

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1996 J. Phys. A: Math. Gen. 29 787

(http://iopscience.iop.org/0305-4470/29/4/008)

Download details:

IP Address: 171.66.16.71

The article was downloaded on 02/06/2010 at 04:08

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/29/4
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen.29 (1996) 787–802. Printed in the UK

The bond-diluted Z(q) ferromagnetic model: criticality
and break-collapse method

M Loulidi† and N Masaif‡
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Abstract. Within a real-space renormalization group (RG) which preserves two-site correlation
functions, we study, on the square lattice, the criticality of the bond-dilutedZ(q) ferromagnetic
model. We generalize the ‘break-collapse method’ which simplifies greatly the exact calculation
of arbitrary Z(q) two-terminal clusters (commonly appearing inRG approaches) mainly for a
large value ofq. We reproduce, in the pure case, several known exact results. The structure
of the phase diagrams, for all the values ofq, is obtained with a good precision. The massless
spin–wave-like phase, which evolves into the Kosterlitz–Touless phase forq → ∞, occurs
aroundqc = 5 (in agreement with the well known exact result). The structure of the phase
diagrams in the diluted case is qualitatively similar to that obtained from the pure model. The
massless spin–wave-like phase resists in an interval of concentrationp which increases for the
large values ofq.

1. Introduction

The Z(q) model, unifies in a single framework, a large amount of theoretically important
statistical models. It generalizes the universal class of the clock model and asq → ∞ it
coincides with the planarXY model. It has attracted the attention of many researchers [1–16]
mainly addressing the square lattice whose study is simplified because of the self-duality in
the pure case which makes it possible to obtain some exact results at criticality [1, 3, 5, 10].
The Z(q) model includes several models like theq-state Potts model, the cubic model, the
Ashkin–Teller (A–T) model, etc. Several attempts have been made to construct the phase
diagram of this model and to locate the valueqc of q above which the spin–wave-like phase
[9] would appear. It has been argued by different techniques that this massless spin–wave
phase starts aroundqc = 5 [5, 12].

The diluted systems exhibit a very wide range of phenomena and provide a rich field
of investigation. More results have been obtained on the diluted Ising spin systems which
have been studied intensively [17].

It was shown exactly that the asymptotic behaviour in the percolation regime,p > pc

is [18]

KTc(p)

2J
∝ 1

ln[1/p − pc)]
(1)

where Tc(p) is the critical temperature versus the bond concentration andPc is the
percolation concentration. This result implies that the thermal crossover exponent8c = 1.
Consequently, the dilute Ising model belongs to the same universality class as the pure one.
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However, theq-state Potts model which generalizes the Ising model presents a crossover
to a new diluted fixed point, and its critical expondentα is positive (2 − α = dν) for
2 < q 6 4 [19]. The transition remains second order but exhibits new values of the critical
exponents. This behaviour is in accord with the Harris criterion [20]. The bond-diluted
Z(4) model was investigated using a real-space renormalization group (RG) scheme [21].
The phase diagram and the crossover critical exponents are obtained. Since the pure model
describes two coupled Ising models with two-spin couplingJ2 and four-spin couplingJ4, the
quenched bond dilution does not affect the percolation concentrationpc of the system. The
dilutedA–T model, with two independent random variables,J2 andJ4, distributed according
to two different probabilities with respective concentrationp1 andp2, was studied [22] using
an extension of the Migdal–Kadanoff renormalization group (MKRG) method. It was shown
that the model presents a percolation phase diagram which describes two types of links with
different concentrations. ForT 6= 0, a rich variety of phase diagrams was obtained.

The main purpose of this paper is to investigate the effects of a quenched bond
dilution on Z(q) model for q > 5 on the square lattice. We do this within a real-
space renormalization-group framework [23, 24] based on the self-dual Wheatstone bridge
cluster. This procedure has been shown to be very convenient for the renormalization
group in the square lattice for the pure [23] and dilutedq-state Potts models [19], discrete
n-vector model [25] as well as for the pure isotropic [26] and anisotropic [27]Z(4) models.
However, we generalize the break-collapse method (BCM) [24] to the pure and bond-diluted
planar discreteZ(q) models to simplify the performance of tracing over all the possible
configurations of the system.

Within this method, the percolation concentration ispc = 1
2 for all the values of the

coupling ratiosKδ/K1(δ = 2, . . . , [q/2]) (where [q/2] denotes the integer part ofq/2),
confirming the conjecture proposed by Alcaraz and Tsallis [7]. Using this technique we
reproduce all the critical frontiers of the usual phases with very good precision and reproduce
some exact results. In contrast to theMKRG method this one shows that the massless spin–
wave-like phase occurs, in the pure case(p = 1), for q > 5, in agreement with the well
known results. Since this method does not always reproduce the correct universality class,
like mostRG approaches, we will not indicate the order of transition at some fixed points.

In section 2 we introduce the model, develop theRG formalism and generalize the
BCM to theZ(q) model. Section 3 contains our main results, and finally, in section 4 we
conclude.

2. The model andRG formalism

Consider a simple square whose lattice points are occupied by a classical ‘spin’ of unit
length pointing in one of the equiangular coplanar directions which are given by the angles
(2πk/q)(k = 0, 1, . . . , q −1). The interaction between the spins is assumed to depend only
on the absolute value of the angular difference between the two nearest-neighbour (NN)
spins. Its most general form can be written as [6]

−βH =
∑
〈ij〉

[q/2]∑
m=1

Kij
m cos

(
2π

q
m(σi − σj )

)
. (2)

Here,σi = 0, 1, . . . , q − 1 and〈ij〉 denotes a pair ofNN spins. The model defined in (2) is
called the general discrete planar model or theZ(q) model.

For special values ofKij
m , the Z(q) model is reduced to theq-state Potts model [28]
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defined as

−βH =
∑
〈ij〉

Kij (qδσiσj
− 1) . (3)

If the K
ij
m are all zero form > 1, the model is the clock or vector Potts model while for

q = 4, it is reduced to the Ashkin–Teller model [29].
A convenient variable, for renormalization-group study, is the transmissivity vector

t = (1, t1, t2, . . . , tq−1), defined through

t
ij

δ = t
ij

q−δ =
1 + 2

[q/2]∑′
m=1

ω
ij
m cos

(
2π
q

mδ
)

1 + 2
[q/2]∑′
m=1

ω
ij
m

(4)

whereδ = 1, 2, . . . , [q/2] andω
ij
m is the Boltzman weight defined as

ωij
m = exp

([q/2]∑′

p=1

Kij
p

(
cos

(
2π

q
mp

)
− 1

))
(5)

where
∑′ indicates that the last term is not multiplied by 2 for the even values ofq.

This vector transmissivity generalizes the scalar quantity that is used for the Ising
(reproduced forq = 2) for q-state Potts (recovered ast

ij

1 = t
ij

2 = · · · = t
ij

q−1) [24] and for
the A–T (which corresponds toq = 4) [9]. Since the dual variables oftδ areωδ, only the

1 + 2
[q/2]∑′

m=1

t ijm cos

(
2π

q
mδ

)
> 0

region is physically meaningful, corresponding to the real values ofKδ.
The quenched bond-dilution is introduced by associating the probability law with the

random variables{Kij
m },

PK({Kij
m }) = p

[q/2]∏
m=1

δ(Kij
m − Km) + (1 − p)

[q/2]∏
m=1

δ(Kij
m ) (6)

where 06 p 6 1 and(t1, t2, . . . , t[q/2]) are constants restricted to the ferromagnetic region.
The probability distribution of the corresponding transmissivity-vector is given by

Pt({t ijm }) = p

[q/2]∏
m=1

δ(t ijm − tm) + (1 − p)

[q/2]∏
m=1

δ(t ijm ) . (7)

To generalize theBCM to the Z(q) model, we will consider, at first, the pure case
p = 1. The transmissivityt (s)(t (p)), corresponding to a series (parallel) array of two bonds,
respectively, associated witht (1) and t (2), is given by

t
(S)
δ = t

(1)
δ t

(2)
δ δ = 1, 2, . . . , [q/2] (bonds in series) (8)

and

(t
(p)

δ ) = (t
(1)
δ )D(t

(2)
δ )D δ = 1, 2, . . . , [q/2] (bonds in parallel) (9)

where the components of the dual transmissivitytD are given by

tDδ =
1 + 2

[q/2]∑′
m=1

tm cos
(

2π
q

mδ
)

1 + 2
[q/2]∑′
m=1

tm

. (10)
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Figure 1. Self-dual two-terminal clusters used in
the renormalization process.◦ ( t) denotes the
terminal (internal) sites.

To treat the Hamiltonian (2) we use the clusterRG transformation indicated in figure 1
(the convenient choice for square lattice) and renormalize the cluster indicated in figure 1(a)
into a single bond indicated in figure 1(b). The RG recursive relations are constructed to
preserve the two-body correlation functions, i.e. exp(−βH ′

1,2) = Tr
3,4

(−βH1234), whereH ′
1,2

and H1234 are the Hamiltonians, respectively, associated with figures 1(a) and (b). (H ′
1,2

includes an additive constant.) It is tedious to perform the trace, mainly for the large values
of q.

The BCM makes it possible to calculate the equivalent transmissivity corresponding to
any two-terminal array reductible whether or not in series/parallel sequences.

To obtain theRG equations we generalize theBCM to theZ(q) model. The equivalent
transmissivityt′ associated with an arbitrary two-terminal graph of theZ(q) bonds has
[q/2] components which are determined byt ′δ = Nδ({t (i)})/D({t (i)}), δ = 1, 2, . . . , [q/2].
{t (i)} denotes the set of transmissivities, respectively, associated with the bonds of the graph,
andNδ({t (i)}) andD({t (i)}) are multilinear polynomials of the form

∑[q/2]
n=0 Ant

(j)
n = 0 for

an arbitraryj th bond. The quantitiesAn depend on the set of transmissivities (denoted by
{t (i)}′) of the remaining bonds. Their determination depends on the symmetry of the model.

For some values ofq the model is symmetric under some permutations. Then, if
we denote byS the degree of such a symmetry, the total number of the pure phases is
given by N8 = [q/2] + 1 − S. For example, forq = 5, the model is symmetric under
permutationt1 → t2 then S = 1 which givesN8 = 2 (ferromagnetic and paramagnetic
phases) while forq = 6, S = 0 (no symmetry under permutation) the model has four phases,
N8 = 4, paramagnetic, ferromagnetic and two partially ordered phases. However, ifq is
a prime number, the model is symmetric under permutationK1 → K2 → · · · → K[q/2]

which givesS = [q/2] − 1. Then, the performance of only two different operations on
the j th bond, namely ‘the break’(t (j)

1 = t
(j)

2 = · · · = t
(j)

[q/2] = 0) and the ‘collapse’

(t
(j)

1 = t
(j)

2 = · · · = t
(j)

[q/2] = 1) determine completely the quantitiesAn, using the symmetry
of the model. It immediately follows for a prime numberq:

Nδ({t (i)}) =
(

1 − 1

[q/2]

[q/2]∑
m=1

t (j)
m

)
Nb

δ ({t (i)}′) + 1

[q/2]

[q/2]∑
m=1

t (j)
m Nc

δ ({t (i)}′)

D({t (i)}) =
(

1 − 1

[q/2]

[q/2]∑
m=1

t (j)
m

)
Db({t (i)}′) + 1

[q/2]

[q/2]∑
m=1

t (j)
m Dc({t (i)}′)

(11)

whereNb
δ , Nc

δ , Db
δ , Dc

δ are the numerators and denominators of the ‘broken’ (b) and the
‘collapsed’ (c) graphs. In general, for any value ofq, the Z(q) model hasNpc = N8 − 2
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Figure 2. Phase diagram of the dilutedZ(5)

model in the (p, t1, t2) space p > pc = 1
2 .

The model has two phase sinks: F(1, 1, 1) and
paramagnetic D(1, 0, 0). The bifurcation fixed
points F1(1, 0.127, 0.494), F2(1, 0.494, 0.127) and the
five-state Potts fixed point P5

(
1,

√
5−1
4 ,

√
5−1
4

)
are

located in the line invariant under duality E1E2 with

E1
(
1, 0,

√
5−1
2

)
and E2

(
1,

√
5−1
2 , 0

)
. The diluted Potts

fixed point is D5(0.6735, 0.6068, 0.6068) located on the
diluted Potts line P5L. The fixed point L(0.5, 1, 1) is
unstable. The physical region is bounded by the chain
curve.

partially ordered phases. Then, the determination of the quantitiesAn needs, in addition,
the performance of theNpc ‘precollapsed’ (thetδ variables are zero for some values ofδ

while the remaining variables aretδ = 1) graphs. Then,

Nδ({t (i)}) = Ab({t (j)})Nb
δ ({t (i)}′) + Ac({t (j)})Nc

δ ({t (i)}′) +
Npc∑
k=1

Abc
k ({t (j)})Nbc

δ,k({t (i)}′)

D({t (i)}) = Ab({t (j)})Db({t (i)}′) + Ac({t (j)})Dc({t (i)}′) +
Npc∑
k=1

Abc
k ({t (j)})Dbc

k ({t (i)}′)
(12)

where Nbc
δ,k and Dbc

k are the numerators and the denominators of the ‘precollapsed’ (bc)
graphs (the summation is over all the ‘precollapsed’ graphs which occur in the model) and
Ab, Ac, Abc

k are multilinear polynomials which depend on thej th bond. Their determination
depends on the value ofq. The knowledge ofNb

δ , Nc
δ , D

b, Dc, Nbc
δ,k and Dbc

k enables the
calculation ofNδ andD. The transmissivitiestb and tc are calculated by using the series
and the parallel algorithms expressed in (8) and (9). Then, we obtain (see figure 2),

tb
δ =

1 + 2
[q/2]∑′
n=1

cos
(

2π
q

δn
)
(tb

n)D

1 + 2
[q/2]∑′
n=1

(tb
n)D

(13)

with

(tb
δ )D =

1+2
[q/2]∑′
n=1

cos
(

2π
q

δn

)
(t13

n t32
n +t14

n t24
n )+

(
2

[q/2]∑′
n=1

cos
(

2π
q

δn

)
(t13

n t32
n )

)(
2

[q/2]∑′
n=1

cos
(

2π
q

δn

)
(t14

n t24
n )

)
1+2

[q/2]∑′
n=1

(t13
n t32

n +t14
n t24

n )+
(

2
[q/2]∑′
n=1

(t13
n t32

n )

)(
2

[q/2]∑′
n=1

(t14
n t24

n )

)
and

tc
δ =


1 + 2

[q/2]∑′
n=1

cos
(

2π
q

δn
)
(t

13,p
n )D

1 + 2
[q/2]∑′
n=1

(t
13,p
n )D




1 + 2
[q/2]∑′
n=1

cos
(

2π
q

δn
)
(t32

n )D

1 + 2
[q/2]∑′
n=1

(t13
n )D

 (14)
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with

(t
ij,p

δ )D =
1+2

[q/2]∑′
n=1

cos
(

2π
q

δn

)
(t

ij
n +t ikn )+

(
2

[q/2]∑′
n=1

cos
(

2π
q

δn

)
(t

ij
n )

)(
2

[q/2]∑′
n=1

cos
(

2π
q

δn

)
(t ikn )

)
1+2

[q/2]∑′
n=1

(t
ij
n +t ikn )+

(
2

[q/2]∑′
n=1

(t
ij
n )

)(
2

[q/2]∑′
n=1

(t ikn )

)
k =

{
4 for (i, j) = (1, 3)

1 for (i, j) = (3, 2) .

The precollapsed terms are more complex, and have to be further reduced through the
BCM (recursive use of the algorithm (12)). All the reducible graphs in series and parallel
operations are straightforwardly calculated. Only the graphs which contain({tδ = 0} and
{tν 6=δ = 1}) bonds resist until the very last step. The transmissivity of a graph which contains
only bonds of the same nature, i.e. all the bonds have the same sets{tδ = 0} and{tν 6=δ = 1},
itself satisfies{tδ = 0} and {tν 6=δ = 1} while the transmissivity of the graphs, containing
mixed bonds, must be evaluated by calculating the partial trace over the internal spin (3 and
4) configurations. Such a tracing is simple since most variablestδ in those graphs vanish
and the remaining variables aretα = 1.

The renormalized parameters obey a new probability distribution which has the form

P({t ijδ }) = p5
[q/2]∏
n=1

δ(t ijn − t (a1)
n ) + p4(1 − p)

[[q/2]∏
n=1

δ(t ijn − t (a2)
n ) + 4

[q/2]∏
n=1

δ(t ijn − t (a3)
n )

]

+2P 3(1 − p)2
[q/2]∏
n=1

δ(t ijn − t (a4)
n ) + [6p3(1 − p)2 + 2p2(1 − p)3]

×
[q/2]∏
n=1

δ(t ijn − t (a
5)

n ) + [2p3(1−p)2+8p2(1−p)3 + 5p(1 − p)4 + (1 − p)5]

×
[q/2]∏
n=1

δ(t ijn ) (15)

where ({t (a1)
n }, {t (a2)

n }, {t (a3)
n }, {t (a4)

n }, {t (a5)
n }) are functions of{tδ} such thatta5

δ = t2
δ and

t
(α)
δ = N

(α)
δ /D(α) (α = a1, a2, a3, a4) where N

(α)
δ and D(α) are given by (12). The

numerators and the denominators of the ‘broken’, ‘collapsed’ and ‘precollapsed’ graphs,
{Nb

δ }, {Nc
δ }, Db, Dc, {Nbc

δ,k}; {Dbc
k } are given in the appendix. To determine the renormalized

variables we shall approximateP({t ijδ }) to the binary law:

P ′({t ijm }) = p′
[q/2]∏
n=1

δ(t ijn − t ′n) + (1 − p′)
[q/2]∏
n=1

δ(t ijn ) . (16)

In order to obtain the renormalized variablesp′ and {t ′δ} as functions ofp and {tδ} we
equalize the lowest-order moments of{t (ij)

δ } calculated with both distributions (15) and (16):

〈t (ij)

δ 〉p = 〈t (ij)

δ 〉p′

〈t (ij)

δ t (ij)
α 〉p = 〈t (ij)

δ t (ij)
α 〉p′ (α 6= δ) .

(17)

The above equations yield the explicitRG recursive relations, i.e.

p′, t ′1, t
′
2, . . . , t

′
[q/2] = Fn(p, t1, t2, . . . , t[q/2]) (n = p′, t ′1, t

′
2, . . . , t

′
[q/2]) . (18)

The iteration of (18) generates flux lines in the parameter space(p, t1, t2, . . . , t[q/2])

from which one can find the critical frontiers. The fixed points are obtained as a solution of

p = Fx(0, {tδ}) tδ = Fδ(p, {tδ}) δ = 1, 2, . . . , [q/2] . (19)
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The critical fixed points provide information about the criticality of the system. The
correlation-length exponentsνi are calculated from the relevant eigenvalues(λi > 1) of the
Jacobian∂(p′, t ′1, t

′
2, . . . , t

′
[q/2])/∂(p, t1, t2, . . . , t[q/2]) at the critical fixed point. Then, we

haveνi = ln b/ ln λi whereb is the linear scaling factor (in our caseb = 2). Whenever
one has more than one relevant eigenvalue, it is useful to define the crossover exponent
8ij = νi/νj which measures the possible different critical behaviour that may appear as
one moves away from a given critical point.

3. Results

q = 5

The ferromagneticZ(5) model has been investigated by several authors. The phase structure
proposed by Wu [12] and Alcaraz and Köberle [5] is based on the duality transformation
and symmetry considerations. They suggested that the phase diagram presents three phases:
ferromagnetic phase (F), disordered phase (D) and a sopht phase. They argued that the last
region is a spin–wave phase. Rujanet al [6], Nishimori [15] and Roomany and Wyld [16]
obtained only the ferromagnetic phase and the disordered one. By exploring the finite-
size scaling ideas and the conformal invariance of the critical infinite system, Alcaraz [13]
showed that the massless spin–wave phase originates, for theZ(5) model, at a bifurcation
point. Bonnieret al [14] have obtained the same result.

Since the model is symmetric under permutationt1 → t2 asq is a prime number only,
‘broken’ and ‘collapsed’ graphs occur. Thent ′δ = Nδ/D with

Nδ({t (i)}) = [1 − 1
2(t34

1 + t34
2 )]Nb

δ + 1
2(t34

1 + t34
2 )]Nc

δ

D({t (i)}) = [1 − 1
2(t34

1 + t34
2 )]Db + 1

2(t34
1 + t34

2 )]Dc
(20)

whereNb
δ , Nc

δ , D
b andDc are given in the appendix by replacingq = 5.

The recursive relation given by (17) provides the phase diagram and flux lines shown
in figure 2.

As expected, theZ(5) model exhibits two different ‘pure’ phasesF and D which
are respectively characterized by an attractor in the(p, t1, t2) space, namely(1, 1, 1) and
(1, 0, 0). The bifurcation points F1 and F2, in the subspacep = 1 (pure case), are stable
on the line invariant under duality. Their region of stability appears to extend to a short
distance beyond this line. This behaviour is reflected by plotting the functiong(t1, t2)

(figure 3) defined by

g(t1, t2) =



[ 2∑
δ=1

(t ′δ − tδ)
2

]1/2

for (t1, t2) > (t∗1 , t∗2 )

−
[ 2∑

δ=1

(t ′δ − tδ)
2

]1/2

for (t1, t2) < (t∗1 , t∗2 )

(21)

on the clock line.(t∗1 , t∗2 ) is the clock fixed point F1.
This behaviour indicates the emergence of a well simulated massless spin–wave-like

phase which appears beyond a bifurcation point. However, this method produces the well
known results [13, 14], namely that this phase occurs beyond a bifurcation point while the
MKRG indicates the presence of such a phase only forq > 6. Within this method we
reproduce some exact results forp = 1:

(i) The critical line E1E2 is a line invariant under duality.
(ii) The fixed point of the five-state Potts model,P5

(√
5−1
4 ,

√
5−1
4

)
.
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Figure 3. The g function versust1 on the line generated by the flow trajectory starting on the
clock line: (a) Z(5) model, (b) Z(6) model and (c) Z(7) model. A clear tendency to a line of
fixed points, which is defined byg = 0, is observed.
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The critical percolation concentration ispc = 1
2 for all values ofK2/K1, confirming the

conjecture proposed by Alcaraz and Tsallis [7]. The critical linep = pc presents one fixed
point L (unstable), located at(t1, t2) = (1, 1).

The invariant subspacet1 = t2 corresponds to the diluted five-state Potts model. It
has a critical point, D5, which is stable on the diluted Potts line P5L. The q-state Potts
model exhibits a first order transition ind = 2 dimension forq > 4 (exact result). But like
most RG approaches, the fixed Potts point, P5, undergoes a second-order phase transition.
However, within this method the diluted fixed point, D5, describes a crossover component
since the pure fixed point, P5, becomes unstable. It is known exactly that the five-state
Potts model exhibits a first-order phase transition while the critical percolation fixed point
L undergoes a second-order phase transition [17]. Then, we believe that an exact study of
the dilutedq-state Potts model will indicate that D5 is tricritical point which is transformed
into a crossover point within a realRG scheme.

The slopea = 1
Tc

DTc
dp

∣∣
p=1

obtained by using this method(a = 1.233) is in agreement
with the exact result(aex = 1.295) [17].

q = 6

The phase structure of the pure two-dimensionalZ(6) model was discussed, in detail, by
different authors [6, 30]. It can be parametrized, in terms of the (3, 2) model of Domany
and Riedel [30], by the identification

K1 cosα(1σ) + K2 cos 2α(1σ) + K3 cos 3α(1σ)

→ L2S1S2 + L3 cos
2π

3
(1m) + L6SiSj cos

2π

3
(1m) (22)

whereα = 2π/6, 1σ = σi − σj , 1m = mi − mj , σi = 0, 1, . . . , 5, mj = 0, 1, 2, Si = ±1.
Therefore, the model describes the coupled Ising and three-state Potts models. As

described above, the renormalized variablest ′δ are given byt ′δ = Nδ/D (δ = 1, 2, 3).
To determine the quantitiesNδ and D, we shall operate on the central bond of
figure 1(a) and obtain the ‘broken’(t1 = t2 = t3 = 0), the ‘collapsed’ (t1 =
t2 = t3 = 1) and the ‘precollapsed’ (t1,1 = 0, t2,1 = 1, t3,1 = 0), (t1,2 = 0,
t2,2 = 0, t3,2 = 1) graphs, respectively, indicated in figure 4. If we notetb =
(tb

1 , tb
2 , tb

3) ≡ (Nb
1/Db, Nb

2/Db, Nb
3/Db), tc = (tc

1, t
c
2, t

c
3) ≡ (Nc

1/Dc, Nc
2/Dc, Nc

3/Dc),
tbc
k = (tbc

1,k, t
bc
2,k, t

bc
3,k), ≡ (Nbc

1,k/D
bc
k , Nbc

2,k/D
bc
k , Nbc

3,k/D
bc
k ) (k = 1, 2), the transmissivities,

respectively, associated with the graphs of figure 4(c)–(d), the quantitiesNδ, D that we are

Figure 4. (a) broken, (b) collapsed, (c) precollapsed 1 and (d) precollapsed 2 graphs for the
Z(6) model obtained from that of figure 1(a), respectively, consideringt1 = t2 = t3 = 0; t1 =
t2 = t3 = 1; t1 = 0, t2 = 0, t3 = 1 andt1 = 0, t2 = 1, t3 = 0.
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Figure 5. Phase diagram of theZ(6) model in the(t1, t2, t3) space forp = 1. The model
has four phase sinks: ferromagnetic F(1, 1, 1), paramagnetic P(0, 0, 0), partially ordered phase
F2(0, 1, 0) and partially ordered phase F3(0, 0, 1). The critical surfaces are described by the
fixed points: I (0, 0,

√
2 − 1) and I∗(

√
2 − 1, 1,

√
2 − 1) (Ising fixed points); P3(0,

√
3−1
2 , 0)

and P∗3(
√

3−1
2 ,

√
3−1
2 , 1) (three-state Potts fixed points) and S (clock fixed point). They meet on

the critical line described by the fixed point C(0.318, 0.318, 0.173) and C∗(0.338, 0.219, 0.338)
(cubic fixed points) and D(0.1516,

√
3−1
2 ,

√
2 − 1) (decoupling fixed point). The six-state Potts

fixed point P6(
√

6−1
5 ,

√
6−1
5 ,

√
6−1
5 ) is localized in the invariant subspacet1 = t2 = t3. The chain

lines bound the physical region.

looking for are given by

Nδ = (1 − (t34
3 + t34

2 − t34
1 ))Nb

δ + t34
1 Nc

δ + (t34
2 − t34

1 )Nbc
δ,1 + (t34

3 − t34
1 )Nbc

δ,2

D = (1 − (t34
3 + t34

2 − t34
1 ))Db + t34

1 Dc + (t34
2 − t34

1 )Dbc
1 + (t34

3 − t34
1 )Dbc

2 .
(23)

The quantitiesNb
δ , Nc

δ , Db andDc are easily calculated by using the algorithm expressed
by equations (8) and (9) as the respective graphs are reducible in series and parallel
operations.Nbc

δ,1, Nbc
δ,2, Dbc

1 andDbc
2 are obtained by using the algorithm (23) and the fact that

a graph exclusively made by precollapsed bonds of the same nature (all of type 1 or type 2)
is itself precollapsed, whereas those with mixed bonds are obtained by calculating the partial
trace which is very simple to do. They are written in their explicit form in the appendix.

The phase diagram of theZ(6) model, in the pure case(p = 1), is shown in
figure 5. It is obtained by using the recursive relations (17). The model has four
phase sinks: ferromagnetic, F, (completely broken symmetry), partially ordered phase, F2,
(Z(2) symmetry), partially ordered phase, F3, (Z(3) symmetry) and paramagnetic phase, P,
(Z(6) symmetry). Each of them is characterized by an attractor in the(p, t1, t2, t3) space,
which are, respectively,(1, 1, 1, 1), (1, 0, 1, 0), (1, 0, 0, 1) and(1, 0, 0, 0). In the pure case
(p = 1), and using thisRG scheme, we reproduce all the known exact results (figure 5):

(i) The fixed points of the three-state Potts model P3 and its dual P∗3, the Ising Model
I and its dual I∗ and the cubic model C and its dual C∗. The lines I I∗ and P3 P∗

3 meet on
the decoupling fixed point of the two coupled models, D.

(ii) All critical lines meet on the six-state Potts fixed point, P6 = (√
6−1
5 ,

√
6−1
5

)
which

is located in the invariant subspacet1 = t2 = t3.
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(iii) The fixed point S which defines the universality class of the clock model is
stable within the plan invariant under duality (DIP). Moreover, its region of stability appears
to extend to a short distance beyond theDIP. This behaviour is reflected by plotting the
function (see figure 3) defined by

g(t1, t2, t3) =



[ 3∑
i=1

(t ′i − ti)
2

]1/2

for (t1, t2, t3) > (t∗1 , t∗2 , t∗3 )

−
[ 3∑

i=1

(t ′i − ti)
2

]1/2

for (t1, t2, t3) < (t∗1 , t∗2 , t∗3 )

(24)

on the clock line.(t∗1 , t∗2 , t∗3 ) is the clock fixed point S. It indicates an emergency of a well
simulated massless spin–wave phase beyond the clock fixed point S.

The critical percolation concentration ispc = 1
2 for all values ofKδ/K1(δ = 2, 3). The

critical line p = pc presents three fixed points: L1 (semi-stable), L2 (semi-stable), and L3
(unstable), respectively, located at(t1, t2, t3) = (0, 1, 0), (0, 0, 1), (1, 1, 1). The invariant
subspacest1 = t2 = 0 and (t1 = t3, t2 = 1) correspond to the diluted Ising model. It is,
for p > pc, in the same universality class of the pure model. The diluted three-state Potts
model is located in the invariant subspacet1 = t3 = 0. It has a critical point in between
which attracts all the other points except P3 and L2. This critical point, D3 = (1, 0, 1, 0),
reproduces the result obtained by Yeomans and Stinchcombe [19]. The pure fixed point
becomes unstable and the system exhibits a crossover to a new critical regime described by
the diluted fixed point. The transition remains second order but exhibits new values of the
critical exponents. This behaviour is in accord with the Harris criterion [20]. The critical
exponentα, for the dilutedq-state Potts fixed point, is positive for allq > 4 while it is
still negative (as forq = 2) for q = 3 [19]. This shows that within thisRG technique, for
b = 2, the appearance of the diluted fixed point for three-state Potts model does not exactly
correspond to the change in the sign ofα. We believe thatα becomes positive for large
values of the scale factorb. The three-state Potts and Ising models are invariant subspaces
of theZ(6) model. However, we reproduce all critical exponentα and slopea = 1

Tc

dTc
dp

∣∣
p=1

which are given in [19]. The slope of the diluted six-state Potts model is,a = 1.190, in
agreement with the exact result(aex = 1.114) [17]. Since this method does not give the
correct nature of the transition of the six-state Potts model, we obtain a fixed point, D6,
which characterizes the crossover exponent within thisRG technique (see figure 6). D6

must be a tricritical point as in the diluted five-state Potts model. The structure of the phase
diagram of the diluted model is qualitatively similar to that obtained in case ofp = 1.

q = 7

TheZ(7) model is symmetric under permutationt1 → t2 → t3. However, the renormalized
variables t ′δ(δ = 1, 2, 3) can be written as function ofNδ and D variables such that
t ′δ = Nδ/D, with

Nδ = [(1 − 1
3(t34

1 + t34
2 + t34

3 )]Nb
δ + 1

3(t34
1 + t34

2 + t34
3 )Nc

δ

D = [(1 − 1
3(t34

1 + t34
2 + t34

3 )]Db + 1
3(t34

1 + t34
2 + t34

3 )Dc .
(25)

The Nb
δ , Nc

δ , D
b andDc variables are given in the appendix.

One expects only two pure phases, ferromagnetic phase (F) and disordered phase (D) as
in the caseq = 5. They are, respectively, characterized by an attractor in the(p, t1, t2, t3)

space, namely(1, 1, 1, 1) and (1, 0, 0, 0). In the pure case(p = 1) (figure 7), the phase
boundaries are surfaces described by S1, S2 and S3 fixed points representing a region of
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Figure 6. Phase diagram of the diluted six-state Potts
model. D6(0.6539, 0.6310) is a diluted fixed point
that is stable on the diluted line.

strong stability. This behaviour, which indicates the presence of a spin–wave-like phase, is
reflected by plotting on the clock line the functiong(t1, t2, t3) (figure 3) defined as follows:

g(t1, t2, t3) =



[ 3∑
i=1

(t ′i − ti)
2

]1/2

for (t1, t2, t3) > (t∗1 , t∗2 , t∗3 )

−
[ 3∑

i=1

(t ′i − ti)
2

]1/2

for (t1, t2, t3) < (t∗1 , t∗2 , t∗3 )

(26)

where(t∗1 , t∗2 , t∗3 ) is the clock fixed point S1.
The critical lines separating different critical surfaces are described by the unstable fixed

points F1, F2 and F3. The intersection of these lines is localized on the unstable fixed point
P7 which corresponds to the pure seven-state Potts model.

The critical percolation concentration ispc = 1
2 for all values ofKδ/K1(δ = 2, 3) as for

all values ofq. The critical linep = pc provides one fixed point L (unstable) which is lo-
cated at(t1, t2, t3) = (1, 1, 1). The phase diagram forpc < p < 1 is qualitatively similar to
that obtained in the pure case. The diluted seven-state Potts model corresponds to the invari-
ant subspacet1 = t2 = t3. Within thisRG technique, this model has a critical point D7, which
is stable on the diluted Potts line P7L. It must be a tricritical point, but as this method does
not give the correct nature of the transition, it describes a crossover component (figure 8).

This method gives, as for all values ofq, a correct value of a slopea = 1.240 in
comparison with the exact oneaex = 1.1965 [17].

4. Conclusion

We have studied on the square lattice by means of a real-space renormalization-group
technique the critical behaviour of the bond-diluted ferromagneticZ(q) model. The present
method is exact on the hierarchical lattice generated by the Wheatstone bridge cluster (for
p = 1). Then, we have generalized the break-collapse method, forZ(q) models, which
greatly simplifies the analytical task to establish the partial trace over the internal spin
(3 and 4) configurations (figure 1). The procedure is operational and quite convenient as
the tedious tracing algebraic calculations are automatically performed through elementary
topological operations. The generalization of theBCM to Z(q) models takes into account the
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Figure 7. Phase diagram of theZ(7) model in the (t1, t2, t3) space for p = 1.
F(1, 1, 1) and P(0, 0, 0) respectively describe the ferromagnetic and the paramagnetic
phases. S1(0.6297, 0.1686, 0.0244), S2(0.1686, 0.0244, 0.6297) and S3(0.0244, 0.6297, 0.1686)
describe the critical surfaces. F1(0.2967, 0.3295, 0.1958), F2(0.3295, 0.1958, 0.2967) and
F3(0.1958, 0.2967, 0.3295) are bifurcation points. P7(

√
7−1
6 ,

√
7−1
6 ,

√
7−1
6 ) is the seven-state

Potts fixed point: the broken lines bound the physical region.

Figure 8. Phase diagram of the diluted seven-state Potts
model. D7(0.6515, 0.6430) is a diluted fixed point that
is stable on the dilute line.

symmetry of the latter. IfS denotes the degree of the symmetry under permutation, we have
Npc = [q/2] − S − 1 partially ordered phases. However, theBCM gives in addition to the
‘break’ and ‘collapsed’ terms,Npc ‘precollapsed’ ones. The first two terms are immediately
calculated by using the series/parallel algorithm, while the last ones need to be reduced
through theBCM until the very last step: the transmissivities of the graphs containing only
bonds of the same nature reproduce themselves, while the graphs containing mixed bonds
are evaluated by doing the partial trace. This latter is simple as most of the components of
the transmissivity vector vanish and the remaining one istδ = 1.

This method is able to produce, in the pure case(p = 1), the critical frontiers of the most
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Figure 9. The threshold concentration
ps(q) versusq above which the spin–
wave (SW) occurs.

usual phases (e.g. paramagnetic, ferromagnetic, partially ordered) with very good precision.
The phase diagrams are then in agreement with those obtained by several methods. Since the
Z(q) model reduces to theq-state Potts model in the invariant subspacet1 = t2 = · · · = t[q/2]

the method reproduces exactly all criticalq-state Potts fixed points. It is known that for
d = 2 theq-state Potts model exhibits a first-order phase transition forq > 4. The diluted
model for q 6 4 presents a crossover component, which is in agreement with the Harris
criterion, described by a fixed point, Dq , that is stable on the critical line. If we takeq as
a continuous variable, the crossover starts fromqcr = 2.672.

It is known exactly that the percolation fixed point exhibits a second-order phase tran-
sition and theq-state Potts model, forq > 4, undergoes a first-order one. Then, we believe
that the dilutedq-state Potts fixed pointDq (for q > 4) will be a tricritical point. Mean-
while it appears, within thisRG technique, as a crossover fixed point. However, for a given
concentrationp the square lattice becomes equivalent to a fractal system and the dimension
of such a system,df , is less than the physical dimensiond = 2. We know thatqc(d) (the
critical value ofq such that forq > qc the model undergoes a first-order phase transition)
decreases relative to dimension,d, of the system [31]. Consequently the critical line, for
small values ofp, is of second order and the diluted fixed pointDq is a tricritical. It will
be located on the meeting of the second-order and the first-order critical line, respectively,
described by the percolation fixed point L( 1

2, 1, 1) and theq-state Potts fixed point Pq .
The critical percolation concentration is,pc = 1

2 for all of Kδ/K1(d = 2, 3, . . . , [q/2]),
in agreement with the conjecture of Alcaraz and Tsallis [7]. It was shown that the pure
Z(q) model presents a massless spin–wave phase which evolves into Kosterlitz–Thouless
(KT) phase [32] asq → ∞, for q > qc. Within this RG technique, we obtainqc = 5 (exact
result) while the Migdal–KadanoffRG givesqc = 6. To study the effect of the dilution on
the spin–wave phase, we have plotted the function defined as follows:

g =



[
(p′ − p)2 +

[q/2]∑
i=1

(t ′i − ti)
2

]1/2

for t > t∗

−
[
(p′ − p)2 +

[q/2]∑
i=1

(t ′i − ti)
2

]1/2

for t < t∗

(27)
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on the clock line.t∗ is the transmissivity vector of the clock fixed point.
We observe that a ‘fixed’ line occurs forp > ps(q) (concentration threshold), such that

pc < ps(q) < 1. As q → ∞, ps(q) → pc = 1
2 (figure 9). Consequently, the massless

spin–wave phase resists even for the dilutedZ(q) model in ap concentration interval which
becomes large for the large values ofq.

In the limit q → ∞ the Z(q) model is reduced to the planar continumXY model.
However, we can estimate the phase diagram of the diluted planarXY model. Indeed,
on a line of the diluted clock model, the system presents a massless spin–wave phase for
p > ps(q) and it remains in the same universality class of the pure one. Since the massless
spin–wave phase evolves into aKT phase, the diluted planarXY model exhibits a phase
transition between disordered andKT phases, forp > pc, and it does not present a crossover
component.
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Appendix

The numerators and denominators of the ‘broken’ and the ‘collapsed’ transmissivities of the
Z(q) model are as follows:

N
b,(a1)
δ = 1

q

[
(1 + 2

[q/2]∑′

n=1

t2
n)2 + 2

[q/2]∑′

n=1

cos
(2π

q
nδ

)
(1 + 2

[q/2]∑′

l=1

cos
(2π

q
nl

)
t2
1)2

]

Db,(a1) = 1

q

[
(1 + 2

[q/2]∑′

n=1

t2
n)2 + 2

[q/2]∑′

n=1

(1 + 2
[q/2]∑′

l=1

cos
(2π

q
nl

)
t2
1)2

]

N
c,(a1)
δ = 1

q2

[
(1 + 2

[q/2]∑′

n=1

tn)
2 + 2

[q/2]∑′

n=1

cos
(2π

q
nδ

)
(1 + 2

[q/2]∑′

l=1

cos
(2π

q
nl

)
t1)

2

]2

Dc,(a1) = 1

q2
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n=1

tn)
2 + 2

[q/2]∑′

n=1

(1 + 2
[q/2]∑′

l=1

cos
(2π

q
nl

)
t1)

2

]2

t
a2
δ = N

(a2)
δ

D(a2)
with N

(a2)
δ = N

(b,(a1)
δ D(a2) = Db,(a1)

N
b,(a3)
δ = t2

δ Db,(a3) = 1

N
c,(a3)
δ = tδ

q2

[
(1 + 2

[q/2]∑′

n=1

tn)
2 + 2

[q/2]∑′

n=1

cos
(2π

q
nδ

)
(1 + 2

[q/2]∑′

l=1

cos
(2π

q
nl

)
t1)

2

]

Dc,(a3) = 1

q2

[
(1 + 2

[q/2]∑′

n=1

tn)
2 + 2

[q/2]∑′

n=1

(1 + 2
[q/2]∑′

l=1

cos
(2π

q
nl

)
t1)

2

]
N

b,(a4)
δ = 0 Db,(a4) = 1 N

c,(a4)
δ = t2

δ Dc,(a4) = 1 .

The numerators and denominators of the ‘precollapsed’ transmissivities of theZ(6)

model are as follows:

N
bc,(a1)

1,1 = 2(t1 + t1t2 + t2t3)
2 N

bc,(a1)

2,1 = t2
1(t1 + 2t3)

2 + t2
2(2 + t2)

2
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N
bc,(a1)

3,1 = 2(2t1t2 + t3)
2

D
bc,(a1)

1 = (2t2
1 + t2

3)2 + (1 + 2t2)
2

N
bc,(a1)

1,2 = 2t2
1(1 + 2t2

2) + 2t2t3(t1 + t2t3) N
bc,(a1)

2,2 = (t2
1 + t2

2)2 + 2t2
2 + 2t1t3(2t2 + t1t3)

N
bc,(a1)

3,2 = 4(2t2
1 t2

2 + t2
3) D

bc,(a1)

2 = (1 + t2
3)2 + 2(t2

1 + t2
2)2

N
bc,(a3)

1,1 = t1(t1 + t1t2 + t2t3) N
bc,(a3)

2,1 = t2
2(2 + t2) N

bc,(a3)

3,1 = t3(2t1t2 + t3)

D
bc,(a3)

1 = 1 + 2t2
2

N
bc,(a3)

1,2 = t1(t1 + t2t3) N
bc,(a3)

2,2 = t2(t2 + t1t3) N
bc,(a3)

3,2 = 2t2
3 D

bc,(a3)

2 = 1+t2
3 .
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